We present the French Question Bank, a treebank of 2600 questions. We show that classical parsing model performance drop while the inclusion of this data set is highly beneficial without harming the parsing of non-question data. when facing out-of- domain data with strong structural diver- gences. Two thirds being aligned with the QB (Judge et al., 2006) and being freely available, this treebank will prove useful to build robust NLP systems.
@InProceedings{SEDDAH16.738,
author = {Djamé Seddah and Marie Candito}, title = {Hard Time Parsing Questions: Building a QuestionBank for French}, booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)}, year = {2016}, month = {may}, date = {23-28}, location = {Portorož, Slovenia}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis}, publisher = {European Language Resources Association (ELRA)}, address = {Paris, France}, isbn = {978-2-9517408-9-1}, language = {english} }