Summary of the paper

Title Incorporating Lexico-semantic Heuristics into Coreference Resolution Sieves for Named Entity Recognition at Document-level
Authors Marcos Garcia
Abstract This paper explores the incorporation of lexico-semantic heuristics into a deterministic Coreference Resolution (CR) system for classifying named entities at document-level. The highest precise sieves of a CR tool are enriched with both a set of heuristics for merging named entities labeled with different classes and also with some constraints that avoid the incorrect merging of similar mentions. Several tests show that this strategy improves both NER labeling and CR. The CR tool can be applied in combination with any system for named entity recognition using the CoNLL format, and brings benefits to text analytics tasks such as Information Extraction. Experiments were carried out in Spanish, using three different NER tools.
Topics Named Entity Recognition, Anaphora, Coreference, Information Extraction, Information Retrieval
Full paper Incorporating Lexico-semantic Heuristics into Coreference Resolution Sieves for Named Entity Recognition at Document-level
Bibtex @InProceedings{GARCIA16.996,
  author = {Marcos Garcia},
  title = {Incorporating Lexico-semantic Heuristics into Coreference Resolution Sieves for Named Entity Recognition at Document-level},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portorož, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA