Title |
Scaling Answer Type Detection to Large Hierarchies |
Authors |
Kirk Roberts and Andrew Hickl |
Abstract |
This paper describes the creation of a state-of-the-art answer type detection system capable of recognizing more than 200 different expected answer types with greater than 85% precision and recall. After describing how we constructed a new, multi-tiered answer type hierarchy from the set of entity types recognized by Language Computer Corporations CICEROLITE named entity recognition system, we describe how we used this hierarchy to annotate a new corpus of more than 10,000 English factoid questions. We show how an answer type detection system trained on this corpus can be used to enhance the accuracy of a state-of-the-art question-answering system (Hickl et al., 2007; Hickl et al., 2006b) by more than 7% overall. |
Language |
Language-independent |
Topics |
Question Answering, Document Classification, Text categorisation, Corpus (creation, annotation, etc.) |
Full paper |
Scaling Answer Type Detection to Large Hierarchies |
Slides |
Scaling Answer Type Detection to Large Hierarchies |
Bibtex |
@InProceedings{ROBERTS08.384,
author = {Kirk Roberts and Andrew Hickl},
title = {Scaling Answer Type Detection to Large Hierarchies},
booktitle = {Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)},
year = {2008},
month = {may},
date = {28-30},
address = {Marrakech, Morocco},
editor = {Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Daniel Tapias},
publisher = {European Language Resources Association (ELRA)},
isbn = {2-9517408-4-0},
note = {http://www.lrec-conf.org/proceedings/lrec2008/},
language = {english}
} |